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In this paper, we draw on the ideas of [5] to extend the standard Serrin criterion 
[18] to an anisotropic version thereof. Because we work on weak solutions instead 
of strong ones, the functions involved have low regularity. Our method summarizes 
in a joint use of a uniqueness lemma in low regularity and the existence of stronger 
solutions. The uniqueness part uses duality in a way quite similar to the DiPerna–
Lions theory, first developed in [7]. The existence part relies on Lp energy estimates, 
whose proof may be found in [5], along with an approximation procedure.
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r é s u m é

Dans cet article, nous utilisons les idées de [5] pour étendre le critère usuel de Serrin 
[18] à un cas anisotrope. Puisque nous nous intéressons à des solutiosn faibles et 
non fortes des équations de Navier–Stokes, les fonctions en jeu possèdent une faible 
régularité. Notre méthode peut se résumer à l’usage conjoint d’un lemme d’unicité 
en basse régularité avec un lemme d’existence de solutions plus régulières. La partie 
concernant l’unicité fait usage de la dualité d’une manière rappelant la théorie 
de Diperna–Lions, exposée pour la première fois dans [7]. La partie concernant 
l’existence repose sur des estimations d’énergie dans Lp, dont la preuve se trouve 
dans [5], ainsi que sur une procédure d’approximation standard.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Presentation of the problem

The present paper deals with the regularity of the Leray solutions of the incompressible Navier–Stokes 
equations in dimension three in space. We recall that these equations are
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⎧⎪⎪⎨
⎪⎪⎩

∂tu + ∇ · (u⊗ u) − Δu = −∇p, t ≥ 0, x ∈ X
3,

div u ≡ 0,

u(0) = u0.

(1)

Here, u = (u1, u2, u3) stands for the velocity field of the fluid, p is the pressure and we have set for simplicity 
the viscosity equal to 1. We use the letter X to denote R and T whenever the current claim or proposition 
applies to both of them. Let us first recall the existence theorem proved by J. Leray in his celebrated paper 
[13].

Theorem 1 (J. Leray, 1934). Let us assume that u0 belongs to the energy space L2(X3). Then there exists 
at least one vector field u in the energy space L∞(R+, L2(X3)) ∩ L2(R+, H1(X3)) which solves the system 
(1) in the weak sense. Moreover, the solution u satisfies for all t ≥ 0 the energy inequality

1
2‖u(t)‖2

L2(X3) +
t∫

0

‖∇u(s)‖2
L2(X3)ds ≤

1
2‖u0‖2

L2(X3).

Uniqueness of such solutions, however, remains an outstanding open problem to this day. In his paper 
from 1961 [18], J. Serrin proved that, if one assumes that there exists a weak solution which is mildly regular, 
then it is actually smooth in space. More precisely, J. Serrin proved that if a weak solution u belongs to 
Lp(]T1, T2[, Lq(D)) for T2 > T1 > 0 and some bounded domain D � X with the restriction 2

p + 3
q < 1, then 

this weak solution is C∞ in the space variable on ]T1, T2[×D. Following his path, many other authors proved 
results in the same spirit, with different regularity assumptions and/or covering limit cases. Let us cite for 
instance [3], [4], [5], [8], [9], [10], [11], [19], [20] and references therein. Closer to our paper is the result of J. 
Neustupa and P. Penel in [17]; their paper is the first about one-component regularity of weak solutions of 
the Navier–Stokes equations, though its main assumption is not scaling invariant.

In this paper, we prove two results of the type we mentioned above: the first one is stated in the torus, 
while the second one is in a spatial domain in the usual Euclidean space. Thanks to the compactness of the 
torus, the first result is easier to prove than its local-in-space counterpart. For this reason, we will use the 
torus case as a toy model, thus avoiding many technicalities and enlightening the overall strategy of the 
proof.

In the torus, the theorem writes as follows.

Theorem 2. Let u be a Leray solution of the Navier–Stokes equations set in R+ × T
3

{
∂tu + ∇ · (u⊗ u) − Δu = −∇p

u(0) = u0

with initial data u0 in L2(T3) and assume that there exists a time interval ]T1, T2[ such that its third 
component u3 satisfies

u3 ∈ L2(]T1, T2[,W 2, 32 (T3)).

Then u is actually smooth in space on ]T1, T2[×T
3.

In a subdomain of the whole space, we need to add a technical assumption on the initial data, namely 
that it belongs to some particular Lp space with p < 2. Notice that such an assumption is automatically 
satisfied in the torus, thank to its compactness.
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Theorem 3. Let u be a Leray solution of the Navier–Stokes equations set in R+ × R
3

{
∂tu + ∇ · (u⊗ u) − Δu = −∇p

u(0) = u0

with initial data u0 in L2(R3) ∩ L
3
2 (R3) and assume that there exists a time interval ]T1, T2[ and a spatial 

domain D � R
3 of compact closure such that its third component u3 satisfies

u3 ∈ L2(]T1, T2[,W 2, 32 (D)).

Then, on ]T1, T2[×D, u is actually smooth in space.

Compared to the classical case, our result may seem weaker, as we require two space derivatives in L
3
2 . 

However, the space in which we assume to have u3 is actually at the same scaling that L2(]T1, T2[, L∞(D))
or L2(]T1, T2[, BMO(D)), which are more classically found in regularity theorems such as the one of J. 
Serrin. In the scaling sense, our assumption is as strong as the usual Serrin criterion. We demand a bit more 
in terms of spatial regularity to counterbalance the anisotropic nature of the criterion.

2. Overview of the proof

Our strategy draws its inspiration from the anisotropic rewriting of the Navier–Stokes system done in 
[5], though it also bears resemblance to the work of [1], [2], [6], [12], [14]. Letting

Ω := rot u = (ω1, ω2, ω3), ω := ω3,

we notice that ω solves a transport-diffusion equation with Ω · ∇u3 as a forcing term. This equation writes
{

∂tω + ∇ · (ωu) − Δω = Ω · ∇u3

ω(0) = ω0,
(2)

for some ω0 which we do not specify. Actually, because we will assume more regularity on u3 than given by 
the J. Leray theorem on a time interval which does not contain 0 in its closure, we will focus our attention 
on a truncated version of ω, for which the initial data is equal to 0. For the clarity of the discussion to 
follow, we drop any mention of the cut-off terms in this section. In the same vein, we will act as if Lebesgue 
spaces on R3 were ordered, which is of course only true on compact subdomains of R3.

Viewing Equation (2) as some abstract PDE problem, we are able to show, by a classical approximation 
procedure, the existence of some solution, call it ω̃, which belongs to what we shall call the energy space 
associated to L

6
5 (X3), namely

L∞(R+, L
6
5 (X3)) ∩ L2(R+, Ẇ

1, 65 (X3)).

Thanks to Sobolev embeddings, we have L
6
5 (X3) ↪→ Ḣ−1(X3) and Ẇ 1, 65 (X3) ↪→ L2(X3). In particular, this 

energy space is a subspace of L2(R+ × X
3). We then conclude that ω̃ is actually equal to ω thanks to a 

uniqueness result in L2(R+ × X
3) for Equation (2). In particular, our ω has now an improved regularity, a 

fact which we will prove useful in the sequel.
At this stage, two things are to be emphasized. The first one is that the uniqueness result comes alone, 

without any existential counterpart. To put it plainly, we are not able to prove existence of solutions in the 
class where we are seeking uniqueness, contrary to, for instance, the now classical results from DiPerna–Lions 
et al. The existence here is given from the outside by the very properties of the Navier–Stokes equations.
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The second one is the absence of any Lp bound uniform in time in the uniqueness class. From the algebra 
of the equation and the regularity assumption we made, one could indeed deduce boundedness in time but 
only in a Sobolev space of strongly negative index, like H−2(X3). The author is unaware of any uniqueness 
result for similar equations in such low-regularity spaces of distributions.

We then proceed to decompose the full vorticity Ω only in terms of ω and ∂3u
3, thanks to the div-curl 

decomposition, otherwise known as the Biot–Savart law. This decomposition essentially relies on the fact 
that a 2D vector field is determined by its 2D vorticity and divergence. In the case of (u1, u2), its 2D
divergence is −∂3u

3, because u is divergence free and its 2D vorticity is exactly ω.
Let us introduce some piece of notation, which is taken from [5]. We denote

∇h := (∂1, ∂2) , ∇⊥
h := (−∂2, ∂1) , Δh := ∂2

1 + ∂2
2 .

Hence, we can write, denoting uh := (u1, u2),

uh = uh
curl + uh

div,

where

uh
curl := ∇⊥

h Δ−1
h ω , uh

div := ∇hΔ−1
h (−∂3u

3).

We thus obtain a decomposition of the force Ω ·∇u3 into a sum a terms which are of two types. The first 
are linear in both ω and u3, while the others are quadratic in u3 and contain no occurrence of ω. The first 
ones write as

ω∂3u
3 + ∂2u

3∂3u
1
curl − ∂1u

3∂3u
2
curl,

while the terms quadratic in u3 are

∂2u
3∂3u

1
div − ∂1u

3∂3u
2
div.

In other words, our ω is now the solution of some modified, anisotropic transport-diffusion equation with 
forcing terms. The forcing terms are exactly those quadratic in u3 mentioned above and by our assumption 
on u3, they lie in L1(R+, L

3
2 (X3)).

We use again our strategy based on uniqueness. On this new, anisotropic equation, we prove a uniqueness 
result in a regularity class in which ω now lies, that is, in

L∞(R+, L
6
5 (X3)) ∩ L2(R+, Ẇ

1, 65 (X3)),

which is a space of functions more regular than the mere L2(R+ ×R
3) given by J. Leray existence theorem. 

We then proceed to prove the existence of a solution to this anisotropic equation in the energy space 
associated to L

3
2 (R3), which is

L∞(R+, L
3
2 (X3)) ∩ L2(R+,W

1, 32 (X3)).

Again, Sobolev and Lebesgue embeddings (see the remark in the beginning of this section) entail that the 
energy space associated to L

3
2 (X3) embeds in that associated to L

6
5 (X3). Thanks to the second uniqueness 

result, we deduce once again that ω has more regularity than assumed. More precisely, we have proved that 
ω lies in

L∞(R+, L
3
2 (X3)) ∩ L2(R+,W

1, 32 (X3)).
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Now that we have lifted the regularity of ω = ω3 to that of ∇u3, it remains to improve the two other 
components of the vorticity. Keeping in mind that we now control two independant quantities in a high 
regularity space instead of one as we originally assumed, the remainder of the proof shall be easier than its 
beginning.

At first sight, ω1 and ω2 solve two equations which both look very similar to Equation (2). Indeed, we 
have

{
∂tω1 + ∇ · (ω1u) − Δω1 = Ω · ∇u1

∂tω2 + ∇ · (ω2u) − Δω2 = Ω · ∇u2.
(3)

We again make use of the div-curl decomposition, but in a somewhat adaptative manner. Recall that, when 
we improved the regularity of ω3, we performed a div-curl decomposition with respect to the third variable. 
Such a decomposition has the drawback of forcing the appearance of anisotropic operators, which make lose 
regularity in some variables and gain regularity in others.

Let us pause for a moment to notice something interesting. From the div-curl decomposition with respect 
to the third variable, we know that me way write

uh := (u1, u2) = ∇⊥
h Δ−1

h ω + ∇hΔ−1
h (−∂3u

3).

Taking the horizontal gradient then gives

∇hu
h = ∇h∇⊥

h Δ−1
h ω + ∇2

hΔ−1
h (−∂3u

3).

That is, ∇hu
h may be written as a linear combination of zero order isotropic differential operators applied to 

ω = ω3 and ∂3u
3. In other words, as a consequence of the Hörmander–Mikhlin theorem in three dimensions, 

the four components of the Jacobian matrix ∂iuj , 1 ≤ i, j ≤ 2 have the same regularity as ω3 and ∂3u
3.

Now that we have some regularity on both u3 and ω3, we may choose to perform the div-curl decompo-
sition with respect to the second variable for u1 and to the first variable for u2. Since the 2D divergence of 
(u3, u1) is −∂2u

2 and its 2D vorticity is ω2, we have

u1 = ∂3Δ−1
(1,3)ω2 − ∂1Δ−1

(1,3)∂2u
2.

In turn, taking the derivative with respect to the third variable gives

∂3u
1 = ∂2

3Δ−1
(1,3)ω2 − ∂3∂1Δ−1

(1,3)∂2u
2.

That is, ∂3u
1 may be expressed as the sum of a term linear in ω2 and a source term which is, for instance, 

in L2(R+, L3(X3)). A similar decomposition also applies to ∂3u
2. Consequently, the system on (ω1, ω2) may 

be recast informally in the following form

{
∂tω1 + ∇ · (ω1u) − Δω1 = (lin. term in ω2) + (source terms in L1(R+, L

3
2 (X3)))

∂tω2 + ∇ · (ω2u) − Δω2 = (lin. term in ω1) + (source terms in L1(R+, L
3
2 (X3))).

Thus, it only remains to prove a uniqueness lemma similar to what we did for Equation (2), along with an 
existence statement in the energy space associated to L

3
2 (X3). We will then have proved that the full vorticity 

Ω was actually in, say, L4(R+, L2(X3))), entailing that the whole velocity field lies in L1(R+, Ḣ1(X3))). 
A direct application of the standard Serrin criterion concludes the proof.
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3. Notations

We define here the notations we shall use in this paper, along with some useful shorthands which we 
shall make a great use thereof.

If a is a real number or a scalar function, we define for p > 0 the generalized power ap by

ap := a|a|p−1

if a �= 0 and 0 otherwise. Such a definition has the advantage of being reversible, in that we have the equality 
a = (ap)

1
p .

Spaces like Lp(Rt, Lq(X3
x)) or Lp(Rt, W s,q(X3

x)) will have their name shortened simply to LpLq and 
LqW s,q.

As we will have to deal with anisotropy, spaces such as Lp(Rt, Lq(Xz, Lr(X2
x,y))) shall be simply written 

LpLqLr when the context prevents any ambiguity.
When dealing with regularizations procedures, often done through convolutions, we will denote the 

smoothing parameter by δ and the mollifying kernels by (ρδ)δ.
If X is either a vector or scalar field which we want to regularize, we denote by Xδ the convolution ρδ ∗X.
Conversely, assume that we have some scalar or vector field Y which is a solution of some (partial) 

differential equation whose coefficients are generically denoted by X. Both X and Y are to be thought as 
having low regularity. We denote by Yδ the unique smooth solution of the same (partial) differential equation 
where all the coefficients X are replaced by their regularized counterparts Xδ.

If 1 ≤ k ≤ n, the horizontal variable associated to the vertical variable k in Rn is the n − 1 tuple of 
variables (1, . . . , k − 1, k + 1, . . . , n). In practice, we will restrict our attention to n = 3, in which case the 
horizontal variable associated to, say, 3 is none other than (1, 2).

Now, for 1 ≤ i, j, k ≤ 3, we denote by Ak
i,j the operator ∂i∂jΔ−1

hk
, with hk being the horizontal variable 

associated to the vertical variable k. We divide these 18 operators into three subsets.
First, we say that Ak

i,j is isotropic if we have both i �= k and j �= k. This corresponds to the case where 
the two derivatives lost through the derivations are actually gained by the inverse Laplacian. Applying the 
Hörmander–Mikhlin multiplier theorem in two dimensions shows that these operators are bounded from 
Lp(X3) to itself for any 1 < p < ∞. There are 9 such operators.

The second class is that of the Ak
i,j for which exactly one on the two indices i and j is equal to k while the 

other is not. We say that such operators are weakly anisotropic. Here, we lose one derivative in the vertical 
variable and gain one in the horizontal variable. There are 6 such operators.

The third and last class, which we will not have to deal with in this paper thanks to the peculiar algebraic 
structure of the equations, is formed by the three Ak

k,k = ∂2
kΔ−1

hk
for 1 ≤ k ≤ 3. To keep a consistent 

terminology, we call them strongly anisotropic. The fact that we lose two derivatives in the vertical variable 
and gain two derivatives in the horizontal variable while working in dimension 3 should make this last family 
quite nontrivial to study.

If A and B are two linear operators, their commutator is defined by [A, B] := AB −BA. We emphasize 
that, when dealing with commutators, we do not distinguish between a smooth function and the multipli-
cation operator by the said function.

4. Preliminary lemmas

We collect in this section various results, sometimes taken from other papers which we will use while 
proving the main theorems. We begin by an analogue of the usual energy estimate, whose proof may be 
found in [5] except it is performed in Lp with p �= 2.
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Lemma 1. Let 1 < p < ∞ and a0 in Lp. Let f be in L1Lp and v be a divergence-free vector field in L2L∞. 
Assume that a is a smooth solution of

{
∂ta + ∇ · (a⊗ v) − Δa = f

a(0) = a0.

Then, |a| p2 belongs to L∞L2 ∩ L2H1 and we have the Lp energy equality

1
p
‖a(t)‖pLp + (p− 1)

t∫
0

‖|a(s)| p−2
2 ∇a(s)‖2

L2ds = 1
p
‖a0‖pLp +

t∫
0

∫
R3

f(s, x)a(s, x)|a(s, x)|p−2dxds.

Our next lemma is, along with the energy estimate above, one of the cornerstones of our paper. Thanks 
to it, we are able to prove that the solutions of some PDEs are more regular than expected. It may be found 
in [15] and appear as a particular case of Theorem 2 in [16], to which we refer the reader for a detailed 
proof.

Lemma 2. Let v be a fixed, divergence free vector field in L2H1. Let ν ≥ 0 be a real constant. Let a be a 
L2
locL

2 solution of

{
∂ta + ∇ · (a⊗ v) − νΔa = 0

a(0) = 0.

Then a ≡ 0.

The following lemma has a somewhat probabilistic flavor to it.

Lemma 3. Let (aδ)δ be a sequence of bounded functions in LpLq, with 1 ≤ p, q ≤ ∞. Let a be in LpLq and 
assume that

{
aδ ⇀∗ a in LpLq

aδ → a a.e.

as δ goes to 0.
Then, for any α ∈]0, 1[, aαδ ⇀∗ aα in L

p
αL

q
α .

Proof. Let us fix some α in ]0, 1[ and let p′ := (1 − α
p )−1, q′ := (1 − α

q )−1. Let g be a smooth function 
with compact support in space, which we denote by S. Let us remark that, from the assumptions we made, 
aαδ → aα almost everywhere. By Egorov’s theorem, because [0, T ] × S has finite Lebesgue measure, for any 
ε > 0, there exists a subset Aε of [0, T ] × S of Lebesgue measure at most ε such that

‖aαδ − aα‖L∞(Ac
ε) → 0 as δ → 0,

where we use Ac
ε as a shorthand for ([0, T ] × S) \Aε. Out of the bad set Aε, we can simply write

∣∣∣∣∣∣
T∫

0

∫
S

(aαδ − aα)g1Ac
ε
dxdt

∣∣∣∣∣∣ ≤ ‖aαδ − aα‖L∞(Ac
ε)‖g‖L1L1 ,



JID:MATPUR AID:3012 /FLA [m3L; v1.238; Prn:18/06/2018; 15:40] P.8 (1-23)
8 G. Lévy / J. Math. Pures Appl. ••• (••••) •••–•••
and this last quantity goes to 0 as δ goes to 0, for any fixed ε. Let με(t) :=
∫
S

1ε(t, x)dx. We notice that 
‖μ‖L1 ≤ ε, while ‖μ‖L∞ ≤ C for some C independant of ε. By interpolation, this gives ‖μ‖Lp′ � ε

1
p′ . On 

Aε, we have

∣∣∣∣∣∣
T∫

0

∫
S

aαδ 1Aε
gdxdt

∣∣∣∣∣∣ ≤
T∫

0

‖aαδ ‖L q
α (S)‖g‖L∞μ

1
q′
ε dt

≤ ‖aαδ ‖L p
α L

q
α
‖g‖L∞L∞‖μ‖

1
q′

L
p′
q′

� ε
1
p′ .

Similarly,

∣∣∣∣∣∣
T∫

0

∫
S

aα1Aε
gdxdt

∣∣∣∣∣∣ � ε
1
p′ .

Letting first δ then ε go to 0, thanks to the fact that p′ is finite, we get the desired convergence. The case 
of a general g in Lp′

Lq′ is handled by a standard approximation procedure, which is made possible by the 
finiteness of both p′ and q′. �
Lemma 4. Let F be in L1L1 spatially supported in the ball B(0, R) for some R > 0. Let a be the unique 
tempered distribution solving

{
∂ta− Δa = F

a(0) = 0.

Then there exists a constant C = CR > 0 such that, for |x| > 2R, we have

|a(t, x)| ≤ CR‖F‖L1L1 |x|−3. (4)

Proof. Let us write explicitly the Duhamel formula for a. We have, thanks to the support assumption on F ,

a(t, x) =
t∫

0

∫
B(0,R)

(2π(t− s))− 3
2 e−

|x−y|2
4(t−s) F (s, y)dyds.

As the quantity τ−3/2e−A2/τ reaches its maximum for τ = 2A2

3 , we have

|a(t, x)| �
t∫

0

∫
B(0,R)

|x− y|−3|F (s, y)|dyds.

If x lies far away from the support of F , for instance if |x| > 2R in our case, we further have

|a(t, x)| ≤ CR

t∫
0

∫
B(0,R)

|x|−3|F (s, y)|dyds = CR|x|−3‖F‖L1L1 . �
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The following lemma is an easy exercise in functional analysis, whose proof will be skipped.

Lemma 5. Let us define, for some fixed R > 0 and p > 1, the space

W̃ 1,p(R3) := {u ∈ W 1,p(R3) s.t. sup
|x|>2R

|x|3|u(x)| < ∞}.

Then the embedding of W̃ 1,p into Lp is compact.

Lemmas 6 to 12 are mostly variations on the same regularization tool, useful to sequentially gain regularity 
orders for weak solutions. The main ideas remain the same: regularize the exterior vector fields, prove 
energy-type estimates uniform in the regularization parameter, pass to the limit and conclude using a 
uniqueness argument in the weaker regularity class. The necessity of these variants comes from the variety 
of subtypes of equations we have to deal with, depending on whether there are – or not – zero-order Fourier 
multipliers (isotropic or anisotropic) or exterior forces in the right-hand side. In order to lighten the burden 
of the reader, we choose to not write the details of all the proofs, focusing our efforts on what we believe are 
the most important ones. Whenever a proof does not sensibly differ from an already written counterpart, 
we only refer to the latter instead of copying mutadis mutandis the former.

The next lemma combines some of the previous ones and plays a key role in the paper. It allows us to 
gain regularity on the solutions to transport-diffusion equations for free.

Lemma 6. Let v be a fixed, divergence free vector field in L2H1. Let 6
5 < p ≤ 2. Let F = (Fi)i be in L1Lp

and assume that a = (ai)i is a solution in L2L2 of
{

∂ta + ∇ · (a⊗ v) − Δa = F

a(0) = 0.

Then a is actually in L∞Lp ∩L2W 1,p and moreover, its i-th component ai satisfies the energy inequality

1
p
‖ai(t)‖pLp + (p− 1)

t∫
0

‖|ai(s)|
p−2
2 ∇ai(s)‖2

L2ds ≤
t∫

0

∫
R3

ap−1
i (s)Fi(s)dxds.

Proof. Before delving into the proof itself, we begin with a simplifying remark. As the equation on ai simply 
writes

∂tai + ∇ · (aiv) − Δai = Fi,

the equations on the ai are uncoupled, which allows us prove to prove the lemma only in the scalar case. 
Thus, we assume in the rest of the proof the a is actually a scalar function.

Let (ρδ)δ be a sequence of space–time mollifiers. Let aδ be the unique solution of the Cauchy system
{

∂taδ + ∇ · (aδvδ) − Δaδ = F δ

aδ(0) = 0.

Performing an energy-type estimate in Lp, which is made possible thanks to Lemma 1, we get for all strictly 
positive t the equality

1
p
‖aδ(t)‖pLp + (p− 1)

t∫
‖|aδ(s)|

p−2
2 ∇aδ(s)‖2

L2ds =
t∫ ∫

ap−1
δ (s)F δ(s)dxds
0 0
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In turn, it entails that

‖aδ(t)‖Lp ≤ p

t∫
0

‖F δ(s)‖Lpds,

which finally gives

1
p
‖aδ(t)‖pLp + (p− 1)

t∫
0

‖|aδ(s)|
p−2
2 ∇aδ(s)‖2

L2ds ≤ pp−2

⎛
⎝ t∫

0

‖F δ(s)‖Lpds

⎞
⎠

p

.

From the definition of F δ, we infer that

1
p
‖aδ(t)‖pLp + (p− 1)

t∫
0

‖|aδ(s)|
p−2
2 ∇aδ(s)‖2

L2ds ≤ pp−2

⎛
⎝ t∫

0

‖F (s)‖Lpds

⎞
⎠

p

,

where the last term is independent of δ. Because p < 2, we have a bound on aδ in L∞Lp ∩L2W 1,p uniform 
in δ, thanks to the identity ∇a = (∇a|a| p−2

2 )|a| 2−p
2 .

We now take the limit δ → 0. First of all, because F δ is nothing but a space–time mollification of F , we 
have

‖F δ − F‖L1Lp → 0 as δ → 0.

Moreover, the weak-∗ accumulation points of (aδ)δ in L∞Lp and L2W 1,p respectively are, in particular, 
solutions of the problem

{
∂tb + ∇ · (bv) − Δb = F

b(0) = 0.

Because p ≥ 6
5 , the space W 1,p(R3) embeds into Lq for some q ≥ 2. By Lemma 2, the only possible 

accumulation point is none other than a. Thus, as δ → 0,
{

aδ ⇀∗ a in L∞Lp

aδ ⇀ a in L2W 1,p.

From Lemma 4, we also have

|aδ(t, x)| � |x|−3

for large enough x, with constants independant of δ. Combining the bounds we have on the family (aδ)δ, 
we have shown that this family is bounded in L2

locW̃
1,p. On the other hand, the equation on aδ may be 

rewritten as

∂taδ = −∇ · (aδ ⊗ vδ) + Δaδ + F δ

and the right-hand side is bounded in, say, L1
locH

−2, because p ≥ 6
5 . By Aubin–Lions lemma, it follows that 

the family (aδ)δ is strongly compact in, say, L2
locL

p. Furthermore, once again thanks to Lemma 2, it follows 
that a is the only strong accumulation point of (aδ)δ in L2

locL
p. Thus,
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aδ → a in L2
locL

p.

Thanks to this strong convergence, up to extracting a subsequence (δn)n, we have

aδn → a a.e. as n → ∞.

We are now in position to apply Lemma 3 to the sequence (aδn)n. With α = p
2 , we have

a
p
2
δn

⇀∗ a
p
2 in L∞L2 as n → ∞,

while α = p − 1 leads to

ap−1
δn

⇀∗ ap−1 in L∞L
p

p−1 as n → ∞.

Using the identity ∇(a p
2 ) = p

2a
p−2
2 ∇a and the energy inequality, we have

sup
n∈N

t∫
0

‖∇(a
p
2
δn

)‖2
L2ds < ∞.

Since a
p
2
δn

⇀∗ a
p
2 in L∞L2 as n → ∞, applying Fatou’s lemma to a

p
2 shows that

t∫
0

‖∇(a
p
2 )‖2

L2ds ≤ lim inf
n→∞

t∫
0

‖∇(a
p
2
δn

)‖2
L2ds < ∞.

Taking the limit in the energy inequality, we finally have

1
p
‖a(t)‖pLp + (p− 1)

t∫
0

‖|a(s)| p−2
2 ∇a(s)‖2

L2ds ≤ pp−2

⎛
⎝ t∫

0

‖F (s)‖Lpds

⎞
⎠

p

.

More interestingly, taking the limit in the energy equality gives us the stronger statement

1
p
‖a(t)‖pLp + (p− 1)

t∫
0

‖|a(s)| p−2
2 ∇a(s)‖2

L2ds ≤
t∫

0

∫
R3

ap−1(s)F (s)dxds.

The proof of the lemma is now complete. �
Lemma 7. Let v be a fixed, divergence free vector field in L2H1. Let A be a matrix-valued function in L2L3. 
Let K be a matrix whose coefficients are homogeneous Fourier multipliers of order 0, smooth outside the 
origin. Let a be a solution in (L2L2)2 of the equation

{
∂ta + ∇ · (a⊗ v) − Δa = AKa

a(0) = 0.

Then a = 0.
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Proof. From the assumptions we made, the right-hand side AKa lies in L1L
6
5 . Thanks to Lemma 6, a is 

actually in L∞L
6
5 ∩L2W 1, 65 . Moreover, we also have a set of energy estimates in L

6
5 on the components ai

of a, which are

5
6‖ai(t)‖

6
5

L
6
5

+ 1
5

t∫
0

‖|ai(s)|−
2
5∇ai(s)‖2

L2ds ≤
t∫

0

∫
R3

a
1
5
i (s)(A(s)Ka(s))idxds.

By Hölder inequality and Sobolev embeddings, we have

t∫
0

∫
R3

a
1
5
i (s)(A(s)Ka(s))idxds �

∑
j

t∫
0

‖A(s)‖L3‖ai(s)‖
1
5

L
6
5
‖aj(s)‖L2ds

�
∑
j

t∫
0

‖A(s)‖L3‖ai(s)‖
1
5

L
6
5
‖∇aj(s)|aj(s)|−

2
5 ‖L2‖aj(s)‖

2
5

L
6
5
ds

�
∑
j

t∫
0

‖A(s)‖L3‖a(s)‖
3
5

L
6
5
‖∇aj(s)|aj(s)|−

2
5 ‖L2ds.

Young inequality now ensures that

t∫
0

‖A(s)‖L3‖a(s)‖
3
5

L
6
5
‖∇aj(s)|aj(s)|−

2
5 ‖L2ds ≤ 1

10

t∫
0

‖∇aj(s)|aj(s)|−
2
5 ‖2

L2ds + C

t∫
0

‖A(s)‖2
L3‖a(s)‖

6
5

L
6
5
ds.

Adding these inequalities and canceling out the gradient terms, we get

5
6‖a(t)‖

6
5

L
6
5
�

t∫
0

‖A(s)‖2
L3‖a(s)‖

6
5

L
6
5
ds.

Grönwall inequality now implies that a = 0. �
Lemma 8. Let 6

5 ≤ p ≤ 2. Let v be a fixed, divergence free vector field in L2H1. Let A be a matrix-valued 
function in L2L3. Let K be a matrix whose coefficients are homogeneous Fourier multipliers of order 0, 
smooth outside the origin. Let F be a fixed function in L1Lp. Let a be a solution in (L2L2)2 of the equation

{
∂ta + ∇ · (a⊗ v) − Δa = AKa + F

a(0) = 0.

Then a is actually in L∞Lp ∩ L2W 1,p.

Proof. The proof follows closely the steps of Lemma 6, so we shall skip it. �
Lemma 9. Let v be a fixed, divergence free vector field in L2H1. Let a be a L∞L

6
5 ∩L2W 1, 65 solution of the 

linear system
⎧⎪⎨
⎪⎩

∂ta + ∇ · (av) − Δa = αa +
∑

i,j=1,2
εi,j(∂jβi)A3

3,ia

a(0) = 0,
(5)
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with εi,j ∈ {0, 1} for any 1 ≤ i, j ≤ 2. We also assume that α lies in L2L3 and that all the βi’s are in L2H
3
2 . 

Then a ≡ 0.

Proof. For the sake of readability, we assume in the proof that only one coefficient εi,j is not zero. We denote 
the corresponding ∂jβi simply by ∂jβ. Let us denote by F the right-hand side of (5). From the assumptions 
and anisotropic Sobolev embeddings, it follows that F belongs to L1L

6
5 . By Lemma 6, a satisfies an energy 

inequality which writes, in our case,

5
6‖a(t)‖

6
5

L
6
5

+ 1
5

t∫
0

‖|a(s)|− 2
5∇a(s)‖2

L2ds ≤
t∫

0

∫
R3

(
a

6
5 (s)α(s) + a

1
5 (s)∂jβ(s)A3

3,ia(s)
)
dxds.

By Hölder inequalities, we have

t∫
0

∫
R3

a
6
5 (s)α(s)dxds �

t∫
0

‖a 3
5 (s)‖2

L3‖α(s)‖L3ds

�
t∫

0

‖a 3
5 (s)‖L2‖|a(s)|− 2

5∇a(s)‖L2‖α(s)‖L3ds

≤ 1
10

t∫
0

‖|a(s)|− 2
5∇a(s)‖2

L2ds + C

t∫
0

‖a 3
5 (s)‖2

L2‖α(s)‖2
L3ds.

To bound the other term, we begin by using a trace theorem on β, which gives β ∈ L2L∞H1. Taking a 
horizontal derivative, we get ∂jβ ∈ L2L∞L2. We emphasize that such a trace embedding would not be true 
in general, because H

1
2 (X) does not embed in L∞(X). Here, the fact that the multiplicator ∂jβ appears 

as a derivative of some function is crucial. Regarding the weakly anisotropic term A3
3,ia, the assumption 

on a gives ∂3a ∈ L2L
6
5 = L2L

6
5L

6
5 . Since in two dimensions the space W 1, 65 embeds into L3, we get 

A3
3,ia ∈ L2L

6
5L3. Combining these embeddings with Hölder inequality, we arrive at

t∫
0

∫
R3

a
1
5 (s)∂jβ(s)A3

3,ia(s)dxds ≤
t∫

0

‖a 1
5 (s)‖L6L6‖∂jβ(s)‖L∞L2‖A3

3,ia(s)‖L 6
5 L3ds

�
t∫

0

‖a 1
5 (s)‖L6‖β(s)‖

H
3
2
‖∇a(s)‖

L
6
5
.

Using the identity ∇a =
(
|a|− 2

5∇a
)
|a| 25 and Hölder inequality again, we get

t∫
0

∫
R3

a
1
5 (s)∂jβ(s)A3

3,ia(s)dxds �
t∫

0

‖a 3
5 (s)‖L2‖β(s)‖

H
3
2
‖|a(s)|− 2

5∇a(s)‖L2 .

Now, Young inequality for real numbers entails, for some constant C,

t∫ ∫
a

1
5 (s)∂jβ(s)A3

3,ia(s)dxds ≤
1
10

t∫
‖|a(s)|− 2

5∇a(s)‖2
L2ds + C

t∫
‖a 3

5 (s)‖2
L2‖β(s)‖2

H
3
2
ds.
0 R3 0 0
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Canceling out the gradient terms, we finally get

‖a 3
5 (t)‖2

L2 �
t∫

0

‖a 3
5 (s)‖2

L2(‖α(s)‖2
L3 + ‖β(s)‖2

H
3
2
)ds.

Grönwall’s inequality then ensures that ‖a 3
5 (t)‖2

L2 ≡ 0 and thus that a ≡ 0. �
The three following lemmas allow us, in the spirit of Lemmas 6 and 9, to enhance the regularity of the 

solutions to some equations. As their proofs are akin to those of the aforementioned Lemmad we only sketch 
them.

Lemma 10. Let 6
5 ≤ p ≤ 2. Let v be a fixed, divergence free vector field in L2H1. Let a be a solution in 

L∞L
6
5 ∩ L2W 1, 65 of the linear system⎧⎪⎨

⎪⎩
∂ta + ∇ · (av) − Δa = αa +

∑
i,j=1,2

εi,j(∂jβi)A3
3,ia + F

a(0) = 0,

with εi,j ∈ {0, 1} for any 1 ≤ i, j ≤ 2. We also assume that α lies in L2L3, that all the βi’s are in L2H
3
2

and that the force F belongs to L1Lp ∩ L1L
6
5 . Then a is actually in L∞Lp ∩ L2W 1,p.

Sketch of proof. For simplicity, we again assume that only one coefficient εi,j is nonzero and write ∂jβ
instead of ∂jβi. We abbreviate the whole right-hand side of the equation by F̃ . First, we mollify the force 
fields α, ∂jβ, F and the weakly anisotropic operator A3

3,i by some regularizing kernel ρδ. This mollified 
right-hand side will be denoted by F̃ δ, even though it is not exactly equal to ρδ ∗ F̃ . This regularization 
allows us to build smooth solutions aδ to the modified equation. In a second step, Lemma 1 gives us estimates 
in the energy space associated to Lp which are uniform in δ. These estimates write, recalling that aδ(0) = 0,

1
p
‖aδ(t)‖pLp + (p− 1)

t∫
0

‖|aδ(s)|
p−2
2 ∇aδ(s)‖2

L2ds =
t∫

0

∫
R3

aδ(s, x)p−1F̃ δ(s, x)dxds.

Repeating the computations we did for Lemma 9 and using Hölder inequality to deal with F δ, we get

‖aδ(t)‖pLp �
t∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds +

t∫
0

‖aδ(s)‖p−1
Lp ‖F δ(s)‖Lpds.

We detail here how to deal with the new term added by F δ. Let us denote, for T > 0,

Mδ(T ) := sup
0≤t≤T

‖aδ(t)‖Lp .

For 0 ≤ t ≤ T , we have

‖aδ(t)‖pLp �
T∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds + Mδ(T )p−1

T∫
0

‖F δ(s)‖Lpds

�
T∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds + Mδ(T )p−1‖F‖L1Lp .
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Taking the supremum over 0 ≤ t ≤ T in the left-hand side gives

‖Mδ(T )‖pLp �
T∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds + Mδ(T )p−1‖F‖L1Lp .

Viewing the above equation as an algebraic inequality between positive numbers, we get

‖Mδ(T )‖Lp �

⎛
⎝ T∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds

⎞
⎠

1
p

+ ‖F‖L1Lp .

Taking again the p-th power and owing to the inequality (a + b)p � ap + bp, we have

‖Mδ(T )‖pLp �

⎛
⎝ T∫

0

‖aδ(s)‖pLp(‖αδ(s)‖2
L3 + ‖βδ(s)‖2

H
3
2
)ds

⎞
⎠ + ‖F‖pL1Lp .

Finally, since ‖aδ(T )‖Lp ≤ Mδ(T ) for all T > 0, Grönwall’s inequality entails that, for some constant C > 0,

‖aδ(T )‖Lp ≤ C‖F‖L1Lp exp

⎛
⎝C

T∫
0

‖α(s)‖2
L3 + ‖β(s)‖2

H
3
2
ds

⎞
⎠ .

Having this bound and its analogue for the exponent p = 6
5 , thanks to the assumptions we did on F , we get 

a solution of our problem in both the energy spaces associated to L
6
5 and Lp. We conclude that this new 

solution is actually equal to a thanks to Lemma 9. �
Lemma 11. Let v be a fixed, divergence free vector field in L2H1. Let a be a L∞L

6
5 ∩ L2W 1, 65 solution of 

the linear system
⎧⎪⎨
⎪⎩

∂ta + ∇ · (av) − Δa = αa +
∑

i,j=1,2
εi,j(∂jβi)A3

3,ia + F1 + F2

a(0) = 0,

with εi,j ∈ {0, 1} for any 1 ≤ i, j ≤ 2. We assume that α lies in L2L3 and that all the βi’s are in L2H
3
2 . 

The exterior forces F1 and F2 belong respectively to L1L
3
2 ∩L1L

6
5 and L

4
3L

6
5 ∩L1L

6
5 . Then a is actually in 

L∞L
3
2 ∩ L2W 1, 32 .

Sketch of proof. We essentially have to repeat the proof of Lemma 10, apart from estimating the term 
coming from F2. Keeping the same notations as in the last proof, we have

t∫
0

∫
R3

aδ(s, x) 1
2F δ(s, x)dxds ≤

t∫
0

‖F δ(s)‖
L

6
5
‖aδ(s)

1
2 ‖L6ds.

Using the identity ‖aδ(s)
1
2 ‖L6 = ‖aδ(s)

3
4 ‖

2
3
L4 and the Sobolev embedding H

3
4 ↪→ L4, we get

t∫
‖F δ(s)‖

L
6
5
‖aδ(s)

1
2 ‖L6ds �

t∫
‖F δ(s)‖

L
6
5
‖aδ(s)

3
4 ‖

1
6
L2‖|a(s)|−

1
4∇a(s)‖

1
2
L2ds.
0 0
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Now, Young inequality gives us, for some constant C > 0,

t∫
0

‖F δ(s)‖
L

6
5
‖aδ(s)

3
4 ‖

1
6
L2‖|a(s)|−

1
4∇a(s)‖

1
2
L2ds ≤

1
10

t∫
0

‖|a(s)|− 1
4∇a(s)‖2

L2ds

+
t∫

0

‖aδ(s)
3
4 ‖2

L2‖F δ(s)‖
4
3

L
6
5
ds + C

t∫
0

‖F δ(s)‖
4
3

L
6
5
ds.

Plugging this final bound in the energy estimate performed in L
3
2 , the rest of the proof is the same as for 

Lemma 10. �
Lemma 12. Let v be a fixed, divergence free vector field in L2H1. Let A be a matrix-valued function in L2L3. 
Let K be a matrix whose coefficients are homogeneous, isotropic Fourier multipliers of order 0. Let F1 be 
a fixed function in L1L

3
2 ∩ L1L

6
5 and F2 be fixed in L

4
3L

6
5 ∩ L1L

6
5 . Let a be a solution in (L2L2)2 of the 

equation

{
∂ta + ∇ · (a⊗ v) − Δa = AKa + F1 + F2

a(0) = 0.

Then a is actually in L∞L
3
2 ∩ L2W 1, 32 .

Proof. This lemma essentially combines the proofs of Lemmas 6, 10 and 11, so we shall not repeat them. �
Lemma 13. Let v0 be a divergence free vector field in L

3
2 ∩L2. Then any Leray solution of the Navier–Stokes 

system

⎧⎪⎪⎨
⎪⎪⎩

∂tv + ∇ · (v ⊗ v) − Δv = −∇p

div v = 0

v(0) = v0

belongs, in addition to the classical energy space L∞L2 ∩ L2H1, to L∞L
3
2 ∩ L2W 1, 32 .

Proof. Let v be a Leray solution of the Navier–Stokes system, which exists by classical approximation 
arguments. Then, letting F := −P∇ · (v ⊗ v) = −P(v · ∇v) where P denotes the Leray projection on 
divergence free vector fields, v solves the heat equation

{
∂tv − Δv = F

v(0) = v0.

That F belongs to L1L
3
2 is easily obtained by the continuity of P on L

3
2 . The result follows from an energy 

estimate in L
3
2 . �

5. Case of the torus

Let us now state the first main theorem of this paper.
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Theorem 4. Let u be a Leray solution of the Navier–Stokes equations set in R+ × T
3

{
∂tu + ∇ · (u⊗ u) − Δu = −∇p

u(0) = u0

with initial data u0 in L2(T3). Assume the existence of a time interval ]T1, T2[ such that its third component 
u3 satisfies

u3 ∈ L2(]T1, T2[,W 2, 32 (T3)).

Then u is actually smooth in space on ]T1, T2[×T
3.

Let χ, ϕ be smooths cutoffs in time, localized inside ]T1, T2[. Let ω be the third component of Ω := rot v. 
Denote χω by ω′. The equation satisfied by ω′ writes

∂tω
′ + ∇ · (ω′u) − Δω′ = χΩ · ∇u3 + ω∂tχ.

Denote F := χΩ · ∇u3 + ω∂tχ. As u is a Leray solution of the Navier–Stokes equations, we know that 
Ω belongs to L2L2. Thus, ω′ also lies in L2L2. On the other hand, the assumption made on u3 tells us 
in particular that Ω · ∇u3 belongs to L1L

6
5 . That ω∂tχ also belongs to L1L

6
5 follows directly from the 

compactness of T3.
We are now in position to apply Lemma 6, which tells us that ω′ is actually in L∞L

6
5 ∩ L2W 1, 65 . Let us 

now expand the quantity Ω · ∇u3 in terms of ω and u3. We have, after some simplifications,

Ω · ∇u3 = ∂3u
3ω + ∂2u

3∂3u
1 − ∂1u

3∂3u
2.

Performing a div-curl decomposition of u1 and u2 in terms of ∂3u
3 and ω, we have

Ω · ∇u3 = ∂3u
3ω + ∂2u

3(−A3
1,3∂3u

3 −A3
2,3ω) − ∂1u

3(−A3
2,3∂3u

3 + A3
1,3ω)

= ∂3u
3ω + A(ω, u3) + B(u3, u3),

where we defined as shorthands the operators

A(ω, u3) := −∂2u
3A3

2,3ω − ∂1u
3A3

1,3ω

B(u3, u3) := −∂2u
3A3

1,3∂3u
3 + ∂1u

3A3
2,3∂3u

3.

Notice that the div-curl decomposition forces the appearance of weakly anisotropic operators acting either 
on ω or u3. Assume from now on that the condition

supp χ ⊂ {ϕ ≡ 1}

holds. Under this condition, the equation on ω′ then reads

∂tω
′ + ∇ · (ω′u) − Δω′ = χω∂3u

3 + χA(ω, u3) + χB(u3, u3) + ω∂tχ

= ω′∂3u
3 + A(ω′, ϕu3) + B(χu3, ϕu3) + ω∂tχ,

because the cutoffs χ and ϕ act only on time.
It follows from the assumptions on u3 that B(χu3, ϕu3) belongs to L1L

3
2 . Moreover, ω∂tχ also belongs 

to L1L
3
2 .



JID:MATPUR AID:3012 /FLA [m3L; v1.238; Prn:18/06/2018; 15:40] P.18 (1-23)
18 G. Lévy / J. Math. Pures Appl. ••• (••••) •••–•••
By Lemma 10, ω′ is actually in L∞L
3
2 ∩ L2W 1, 32 .

Let us now write the system of equations satisfied by the other components of the vorticity, which we 
respectively denote by ω1 and ω2. We have

{
∂tω1 + ∇ · (ω1u) − Δω1 = ∂3u

1∂1u
2 − ∂2u

1∂1u
3

∂tω2 + ∇ · (ω2u) − Δω2 = ∂1u
2∂2u

3 − ∂3u
2∂2u

1.

We now perform a div-curl decomposition of u1 with respect to the second variable. That is, we write that

u1 = ∂3Δ−1
(1,3)ω2 − ∂1Δ−1

(1,3)∂2u
2.

In turn, we have

∂3u
1 = ∂2

3Δ−1
(1,3)ω2 − ∂3∂1Δ−1

(1,3)∂2u
2

= A2
3,3ω2 −A2

1,3∂2u
2.

What we wish to emphasize is that ∂3u
1 may be expressed as an order zero isotropic Fourier multiplier 

applied to ω2 and ∂2u
2. The same reasoning applies to ∂3u

2, which may decomposed in terms of ω1 et ∂1u
1. 

The fact that there is no (weakly) anisotropic operator here is a great simplification compared to the study 
of ω3, for which such a complication was unavoidable. The system on (ω1, ω2) may be recast in the following 
form: {

∂tω1 + ∇ · (ω1u) − Δω1 = (A2
3,3ω2 −A2

1,3∂2u
2)∂1u

2 − ∂2u
1∂1u

3

∂tω2 + ∇ · (ω2u) − Δω2 = ∂1u
2∂2u

3 + (A1
3,3ω1 + A1

2,3∂1u
1)∂2u

1.

Informally, the above system behaves roughly like its simplified version
{

∂tω1 + ∇ · (ω1u) − Δω1 = (ω2 − ∂2u
2)∂1u

2 − ∂2u
1∂1u

3

∂tω2 + ∇ · (ω2u) − Δω2 = ∂1u
2∂2u

3 + (ω1 + ∂1u
1)∂2u

1,

which is much simpler to understand and shall make the upcoming computations clearer. Let us denote, as 
we did for ω = ω3, ω′

1 := χω1 and ω′
2 := χω2. Applying the time cutoff χ to the system on (ω1, ω2), we get

{
∂tω

′
1 + ∇ · (ω′

1u) − Δω′
1 = ϕ∂1u

2A2
3,3ω

′
2 − ϕ∂1u

2A2
1,3(χ∂2u

2) − (χ∂2u
1)(ϕ∂1u

3) + ω1∂tχ

∂tω
′
2 + ∇ · (ω′

2u) − Δω′
2 = ϕ∂2u

1A1
3,3ω

′
1 + ϕ∂2u

1A1
2,3(χ∂1u

1) + (χ∂1u
2)(ϕ∂2u

3) + ω2∂tχ.

Finally, applying the same decomposition to u1 and u2, we have four equations of the type

∂1u
1 = −A3

1,1ω3 −A3
1,2∂3u

3,

which allow us to control, for 1 ≤ i, j ≤ 2, ∂iuj in L∞L
3
2 ∩L2W 1, 65 in terms of ω3 and ∂3u

3 in the same space. 
Thus, what we have gained through the regularity enhancement on ω3 is the control of four components of 
the Jacobian of u, in addition to the three provided by the assumption on u3. For this reason, the system 
we have on (ω1, ω2) may be viewed as an affine and isotropic one with all exterior forces in scaling invariant 
spaces. For instance, ϕ∂2u

1 belongs to L2L3, while the exterior forces lie in L1L
3
2 . Lemma 8 now implies 

that both ω′
1 and ω′

2 are in L∞L
3
2 ∩ L2W 1, 32 .

We now have proven that the whole vorticity Ω belongs to L4L2 by Sobolev embeddings. In turn, it 
implies that the whole velocity field belongs to L4H1. The main theorem then follows from the application 
of the usual Serrin criterion.
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6. Local case in R3

We state the second main theorem of this paper.

Theorem 5. Let u be a Leray solution of the Navier–Stokes equations set in R+ × R
3

{
∂tu + ∇ · (u⊗ u) − Δu = −∇p

u(0) = u0

with initial data u0 in L2(R3) ∩L 3
2 (R3). Assume the existence of a time interval ]T1, T2[ and a spatial domain 

D � R
3 of compact closure such that its third component u3 satisfies

u3 ∈ L2(]T1, T2[,W 2, 32 (D)).

Then, on ]T1, T2[×D, u is actually smooth in space.

Let us describe in a few words our strategy for this case. Compared to the torus, there are two main 
differences to notice. First, since the assumption on u3 was made on the whole space, the cutoffs acted 
only in time. The difference between the original Navier–Stokes equation and its truncated version was 
thus only visible in one term, rendering our strategy easier to apply. On the other hand, since the torus 
has finite measure, the Lebesgue spaces form a decreasing family of spaces. This fact allowed us to lose 
some integrability when we wanted to embed different forcing terms in the same space. This last difference 
will become visible when dealing with commutators between Fourier multipliers and the cutoff functions, 
thus lengthening a little bit the proof, compared to the torus case. For that technical reason, we added 
an assumption on the initial data which was trivially true in the torus case, thanks to the aforementioned 
embedding of Lebesgue spaces.

Let χ, ϕ be smooths cutoffs in space and time, localized inside ]T1, T2[×D. Let ω be the third component 
of Ω := rot v. Denote χω by ω′. The equation satisfied by ω′ writes

∂tω
′ + ∇ · (ω′u) − Δω′ = χΩ · ∇u3 + C(ω, χ),

where C(ω, χ) stands for all the cutoff terms. Namely, we have

C(ω, χ) := ω∂tχ + ωu · ∇χ− ωΔχ− 2∇ω · ∇χ.

As χ is smooth and has compact support, we claim that C(ω, χ) belongs to L1L
3
2 +L2H−1. Because χ has 

compact support in space, the terms in L1L
3
2 also lie in L1L

6
5 . Finally, the quantity χΩ∇u3 clearly belongs 

to L1L
6
5 . Let now ω′

(1) be the unique solution in L∞L
6
5 ∩ L2W 1, 65 of the equation

∂tω
′
(1) + ∇ · (ω′

(1)u) − Δω′
(1) = χΩ · ∇u3 + ω∂tχ + ωu · ∇χ− ωΔχ

with the initial condition ω′
(1)(0) = 0. This solution exists thanks to the combination of Lemma 1 with a 

regularization procedure for the velocity field u; it is unique thanks to Lemma 2, since the vector field u is 
in L2H1. Similarly, let ω′

(2) be the unique solution in L∞L2 ∩ L2H1 of

∂tω
′
(2) + ∇ · (ω′

(2)u) − Δω′
(2) = −2∇ω · ∇χ

with the initial condition ω′
(2)(0) = 0. Let ω̃′ := ω′

(1) +ω′
(2) −ω′. From the regularity we have on each term, 

ω̃′ belongs to L2
locL

2 and satisfies
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∂tω̃
′ + ∇ · (ω̃′u) − Δω̃′ = 0

along with the initial condition ω̃′(0) = 0. Lemma 2 then implies that ω̃′ ≡ 0, from which it follows that

ω′ = ω′
(1) + ω′

(2)

By local embeddings of Lebesgue spaces, ω′
(2) also belongs to L∞L

6
5
loc ∩ L2W

1, 65
loc . On the other hand, it is 

rather trivial that ω′
(1) also belongs to L∞L

6
5
loc ∩ L2W

1, 65
loc . Now, since ω′ has compact support in space, it 

follows that ω′ belongs to the full space L∞L
6
5 ∩L2W 1, 65 . In particular, the forcing term ∇ω ·∇χ is now an 

integrable vector field, instead of a mere L2H−1 distribution. At this stage, because the reasoning is valid 
for any cutoff χ supported in ]T1, T2[×D, we have proved that the third component ω of the vorticity of u
has the regularity

ω ∈ L∞
loc(]T1, T2[, L

6
5
loc(D)) ∩ L2

loc(]T1, T2[,W
1, 65
loc (D)).

In particular, such a statement allows us to improve the regularity of C(ω, χ) to L1L
3
2 +L2L

6
5 . Such a gain 

will be of utmost importance near the end of the proof. Expanding again the product Ω · ∇u3 in terms of 
ω and u3 only, we have

∂tω
′ + ∇ · (ω′u) − Δω′ = χω∂3u

3 + χA(ω, u3) + χB(u3, u3) + C(ω, χ).

From now on, we enforce the condition

supp χ ⊂ {ϕ ≡ 1}.

Now, because the cutoff χ acts both in space and time, we have to carefully compute the associated com-
mutators with the operators A and B. First, let us notice that A is local in its variable u3, which allows us 
to write that

χA(ω, u3) = χA(ω, ϕu3).

On the other hand, for i = 1, 2,

χA3
i,3ω = χ∂iΔ−1

(1,2)(∂3ω)

= [χ, ∂iΔ−1
(1,2)](∂3ω) + ∂iΔ−1

(1,2)(χ∂3ω)

= [χ, ∂iΔ−1
(1,2)](∂3ω) + A3

i,3(χω) − ∂iΔ−1
(1,2)(ω∂3χ)

We now estimate the two remainder terms in L1L
3
2 . By Sobolev embeddings in R2, we have, for t > 0 and 

x3 ∈ R,

‖
(
∂iΔ−1

(1,2)(ω∂3χ)
)

(t, ·, x3)‖L6(R2) � ‖(ω∂3χ)(t, ·, x3)‖
L

3
2 (R2)

.

Thus,

‖∂iΔ−1
(1,2)(ω∂3χ)‖

L2L
3
2 L6 � ‖ω∂3χ‖

L2L
3
2
� ‖ω‖L2L2‖∇χ‖L∞L6 .

The commutator is a little bit trickier. First, we write
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∂3ω = ∂3(∂1u
2 − ∂2u

1) = ∂1(∂3u
2) − ∂2(∂3u

1).

In order to continue the proof, we need a commutator lemma, which we state and prove below for the sake 
of completeness, despite its ordinary nature.

Lemma 14. Let f be in L
3
2 (R2) and χ be a test function. The following commutator estimates hold:

‖[χ,∇Δ−1](∇f)‖L6(R2) � ‖∇χ‖L∞(R2)‖f‖L 3
2 (R2)

and

‖[χ,∇2Δ−1](f)‖L6(R2) � ‖∇χ‖L∞(R2)‖f‖L 3
2 (R2)

.

Proof. We notice that the first estimate may be deduced from the second thanks to the identity

[χ,∇Δ−1](∇f) = [χ,∇2Δ−1](f) + ∇Δ−1(f∇χ).

Since the operator ∇Δ−1 is continuous from L
3
2 (R2) to L6(R2), we get

‖∇Δ−1(f∇χ)‖L6(R2) � ‖f∇χ‖
L

3
2 (R2)

� ‖f‖
L

3
2 (R2)

‖∇χ‖L∞(R2)

It only remains to study the second commutator, which we denote by Cχ. There exist numerical constants 
c1, c2 such that, for almost every x ∈ R

2,

Cχ(x) =
∫
R2

(
c1

(x− y) ⊗ (x− y)
|x− y|4 + c2

|x− y|2 I2
)

(χ(x) − χ(y))f(y)dy.

This yields

|Cχ(x)| � ‖∇χ‖L∞(R2)

∫
R2

|f(y)|
|x− y|dy = ‖∇χ‖L∞(R2)(|f | ∗ | · |−1)(x).

Applying the Hardy–Littlewood–Sobolev inequality to f , we get

‖Cχ‖L6(R2) � ‖∇χ‖L∞(R2)‖f‖L 3
2 (R2)

as we wanted. �
Thanks to Lemma 14, we have the estimate

‖[χ, ∂iΔ−1
(1,2)](∂1(∂3u

2))‖L6(R2) � ‖∇χ‖L∞‖∂3u
2‖

L
3
2 (R2)

,

which translates into

‖[χ, ∂iΔ−1
(1,2)](∂1(∂3u

2))‖
L2L

3
2 L6 � ‖∇χ‖L∞‖∂3u

2‖
L2L

3
2
.

From Lemma 13 applied to u, we deduce that, in particular, ∂3u
2 belongs to L2L

3
2 . Moreover, we may bound 

‖∂3u
2‖

L2L
3
2

by a quantity depending only on u0 through its L2 and L
3
2 norms. Gathering these estimates, 

we may write
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χA(ω, ϕu3) = A(χω, ϕu3) + R(A),

with the remainder R(A) bounded in L1L
3
2 only in terms of the initial data u0, the cutoff χ and u3. In 

particular, it may be regarded as an exterior force independant of ω′ in the sequel and scaling invariant. 
The same reasoning applies to B: we have

χB(u3, ϕu3) = B(χu3, ϕu3) + R(B),

with R(B) bounded in L1L
3
2 only in terms of χ and u3. Finally, the equation on ω′ has been rewritten as

∂tω
′ + ∇ · (ω′u) − Δω′ = ω′∂3u

3 + A(ω′, ϕu3) + B(χu3, ϕu3) + C(ω, χ) + R(A) + R(B).

Applying Lemma 11, we deduce that the truncated vorticity ω′ is actually in L∞L
3
2 ∩ L2W 1, 32 . Again, 

thanks to the div-curl decomposition, it follows that space–time truncations of ∂iuj are controlled in the 
same space in terms of ω′ and u3, for 1 ≤ i, j ≤ 2. We now turn to the other components of the vorticity, 
namely ω1 and ω2. Truncating the equations and using the div-curl decomposition, we have

{
∂tω

′
1 + ∇ · (ω′

1u) − Δω′
1 = χ(A2

3,3ω2 −A2
1,3∂2u

2)∂1u
2 − χ∂2u

1∂1u
3 + C(ω1, χ)

∂tω
′
2 + ∇ · (ω′

2u) − Δω′
2 = χ∂1u

2∂2u
3 + χ(A1

3,3ω1 + A1
2,3∂1u

1)∂2u
1 + C(ω2, χ).

Let us now write and estimate the necessary commutators. By Lemma 14, we have, when k is neither i
nor j,

‖[χ,Ak
i,j ](ω2)‖L6(R2) � ‖∇χ‖L∞‖ω2‖

L
3
2 (R2)

.

Thus,

‖[χ,Ak
i,j ](ω2)‖

L2L
3
2 L6 � ‖∇χ‖L∞‖ω2‖

L2L
3
2
.

On the other hand, by a trace theorem, we have, for a in W 1, 32 (R3),

‖a‖L∞(R,L2(R2)) � ‖a‖
W 1, 32 (R3)

.

These two estimates together entail that, for 1 ≤ i, j ≤ 2,

‖∂i(ϕuj)[χ,Ak
i,j ](ω2)‖

L1L
3
2
� ‖∇χ‖L∞‖ω2‖

L2L
3
2
‖∂i(ϕuj)‖

W 1, 32
.

The system on (ω′
1, ω

′
2) may be recast as

{
∂tω

′
1 + ∇ · (ω′

1u) − Δω′
1 = (A2

3,3ω
′
2 −A2

1,3∂2(χu2))∂1(ϕu2) − ∂2(χu1)∂1(ϕu3) + C(ω1, χ) + R1

∂tω
′
2 + ∇ · (ω′

2u) − Δω′
2 = ∂1(χu2)∂2(ϕu3) + (A1

3,3ω
′
1 + A1

2,3∂1(χu1))∂2(ϕu1) + C(ω2, χ) + R2,

where the remainders R1,2 contain, among other terms, the commutators we just estimated. The important 
fact is the boundedness of R1,2 in L1L

3
2 . Because χ has compact support in time, the term −2∇ω · ∇χ is 

in L
4
3L

6
5 . Applying Lemma 12, it follows that both ω′

1 and ω′
2 belong to L∞L

3
2 ∩ L2W 1, 32 . The conclusion 

of the theorem now follows from the standard Serrin criterion.
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